metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(dicyanamido- κN^1)(nitrato- $\kappa^2 O, O'$)(2,3,5,6-tetra-2-pyridylpyrazine- $\kappa^3 N^2, N^1, N^6$)manganese(II)

Lorena Callejo,^a Noelia De la Pinta,^a Pablo Vitoria^a and Roberto Cortés^b*

^aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain, and ^bDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco, Apdo. 450, E-01080 Vitoria, Spain

Correspondence e-mail: roberto.cortes@ehu.es

Received 27 November 2008; accepted 9 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.119; data-to-parameter ratio = 19.9.

In the title compound, $[Mn(C_2N_3)(NO_3)(C_{24}H_{16}N_6)(H_2O)]$, the central manganese(II) ion is heptacoordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water molecule. The structure contains isolated neutral complexes, which are linked by O(water)— $H \cdots N$ hydrogen bonds generating chains along [010].

Related literature

For related structures containing coordination compounds with the ligands tppz and dca, see: Carranza *et al.* (2003); Hsu *et al.* (2005). For related literature, see: Lainé *et al.* (1995).

a = 14.0988 (11) Å

c = 18.7205 (13) Å

b = 9.7739 (8) Å

Experimental

Crystal data

 $\begin{bmatrix} Mn(C_2N_3)(NO_3)(C_{24}H_{16}N_6)(H_2O) \end{bmatrix} \\ M_r = 589.44 \\ Monoclinic, P2_1/n$

 $\beta = 94.491 (6)^{\circ}$ $V = 2571.8 (3) \text{ Å}^{3}$ Z = 4Mo K α radiation

Data collection

Oxford Diffraction Xcalibur 2	
diffractometer	
Absorption correction: analytical	
(CrysAlis RED; Oxford	
Diffraction, 2007)	
$T_{\min} = 0.856, \ T_{\max} = 0.969$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.119$ S = 0.937480 reflections 376 parameters 2 restraints 7480 independent reflections 4848 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$

24694 measured reflections

 $\mu = 0.57 \text{ mm}^{-1}$

T = 298 (2) K

 $0.42 \times 0.31 \times 0.08 \text{ mm}$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.77$ e Å⁻³ $\Delta \rho_{min} = -0.31$ e Å⁻³

Table 1

Selected bond lengths (Å).

Mn1 - O1W	2.1537 (15)	Mn1-N1	2.3015 (15)
Mn1-N7	2.2457 (18)	Mn1-N3	2.3247 (16)
Mn1-O1	2.2648 (15)	Mn1-O2	2.4021 (15)
Mn1-N2	2.2796 (15)		

Table 2	
Hydrogen-bond geometry (Å	°)

nyurogen-bonu	geometry	(A,).	

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $O1W = H1W \cdots N6^{i}$ 0.78(2)2.03(2)2.800(2)174(3) $O1W - H2W \cdot \cdot \cdot N7^{i}$ 0.80(2)2.24(2)3.029 (2) 168 (2) Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2003).

This work was supported by Universidad del País Vasco (UPV 00169.125–13956/2004) and the Ministerio de Ciencia y Tecnología (CTQ2005–05778-PPQ). LC thanks UPV/EHU for her doctoral fellowship. N de la P thanks UPV/EHU for financial support from "Convocatoria para la concesión de ayudas de especialización para investigadores doctores en la UPV/EHU (2008)"

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2176).

References

- Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De
- Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Carranza, J., Brennan, C., Sletten, J., Clemente-Juan, J. M., Lloret, F. & Julve, M. (2003). Inorg. Chem. 42, 8716-8727.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. Hsu, G.-Y., Chen, C.-W., Cheng, S.-C., Lin, S.-H., Wei, H.-H. & Lee, C.-J. (2005). Polyhedron, 24, 487-494.
- Lainé, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156-5165.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxford, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2009). E65, m68-m69 [doi:10.1107/S1600536808041755]

Aqua(dicyanamido- κN^1)(nitrato- $\kappa^2 O, O'$)(2,3,5,6-tetra-2-pyridylpyrazine- $\kappa^3 N^2, N^1, N^6$)manganese(II)

L. Callejo, N. De la Pinta, P. Vitoria and R. Cortés

Comment

Only a few examples are known of coordination compounds with the ligands dicyanamido (dca) and 2,3,5,6-tetra-2-pyridylpyrazine (tppz) (Carranza *et al.*, 2003; Hsu *et al.*, 2005).

The molecule of the title compound (I) (Fig. 1) contains a central manganese(II) metal heptacoordinated to a terminal dicyanamide ligand, three nitrogen atoms of the tppz ligand, two oxygen atoms of the nitrate group, and one water molecule.

The central pyrazine ring of the tppz is severely distorted from planarity (N2—C11—C12—N5 = 20.9 (3)°, N2—C13—C14—N5 = 19.9 (2)°) and adopts a twist-boat conformation with a puckering amplitude of 0.215 (2)Å (Spek, 2003). The pyridyl rings are rotated away from planarity with the pyrazine ring, with angles between planes of 25.3 (1) and 21.5 (1)° for the ones coordinated to Mn(II), and larger [31.1 (1), 35.9 (1)°] for the other ones.

The O(water)—H…N hydrogen bonds formed between the water as donor, and a non-coordinated pyridyl ring and the coordinated nitrogen atom of dca as acceptors, generate chains of molecules along the [010] direction (Fig.2).

Experimental

The title compound was prepared by mixing two acetonitrile solutions (10 ml each) of $Mn(NO_3)_2.4H_2O$ (125.5 mg, 0.50 mmol) and 2,3,5,6-tetrakis(2-pyridyl)pirazine (97.1 mg, 0.25 mmol). After vigorous stirring for 3 h at a temperature of 30°C, a yellow precipitate appeared. To the resulting solution, a water/acetonitrile (50%) solution (10 ml) of sodium dicyanamide was added, and it was stirred at 40°C for 3 h, and then 2 days at room temperature. The precipitate was filtered off and yellow plaques formed from the resulting solution by slow evaporation at room temperature.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 (2), and with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Aqua(dicyanamido- κ N¹)(nitrato- κ^2 O,O')(2,3,5,6-tetra-2- pyridylpyrazine- $\kappa^3 N^2$,N¹,N⁶)manganese(II)

Crystal data	
[Mn(C ₂ N ₃)(NO ₃)(C ₂₄ H ₁₆ N ₆)(H ₂ O)]	$F_{000} = 1204$
$M_r = 589.44$	$D_{\rm x} = 1.522 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.475 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by flotation
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2543 reflections
a = 14.0988 (11) Å	$\theta = 3.2 - 31.9^{\circ}$
b = 9.7739 (8) Å	$\mu = 0.57 \text{ mm}^{-1}$
c = 18.7205 (13) Å	T = 298 (2) K
$\beta = 94.491 \ (6)^{\circ}$	Prism, yellow
V = 2571.8 (3) Å ³	$0.42 \times 0.31 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur 2 diffractometer	7480 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4848 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
Detector resolution: 8.3504 pixels mm ⁻¹	$\theta_{\rm max} = 30.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -18 \rightarrow 19$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)	$k = -13 \rightarrow 12$
$T_{\min} = 0.856, T_{\max} = 0.969$	$l = -26 \rightarrow 26$

24694 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0676P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\text{max}} = 0.003$
7480 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
376 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Experimental. CrysAlis RED (Oxford Diffraction Ltd., 2007) Analytical numeric absorption correction using a multifaceted crystal model.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates an	d isotropic or	• equivalent	isotropic	displacement	parameters	(A^2))
----------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.666558 (19)	0.45676 (3)	0.206427 (15)	0.02617 (9)
N1	0.78906 (11)	0.48216 (15)	0.29414 (8)	0.0258 (3)
N2	0.80556 (10)	0.38970 (15)	0.16256 (8)	0.0244 (3)
N3	0.63611 (11)	0.34999 (16)	0.09605 (9)	0.0302 (4)
01	0.51063 (11)	0.51437 (17)	0.19225 (9)	0.0447 (4)
O2	0.58673 (10)	0.60852 (16)	0.28292 (8)	0.0424 (4)
O1W	0.63075 (10)	0.27874 (16)	0.26656 (9)	0.0386 (4)
H1W	0.5843 (14)	0.239 (3)	0.2725 (15)	0.058*
H2W	0.6758 (15)	0.237 (2)	0.2837 (13)	0.058*
O3	0.44256 (10)	0.67307 (17)	0.25070 (9)	0.0483 (4)
N4	0.84607 (13)	0.11733 (18)	0.00078 (9)	0.0397 (4)
N5	0.97237 (11)	0.37317 (17)	0.10010 (8)	0.0298 (4)
N6	1.03910 (11)	0.63452 (17)	0.22266 (9)	0.0348 (4)
N7	0.70245 (13)	0.64756 (18)	0.14738 (10)	0.0399 (4)
N8	0.77072 (15)	0.6846 (3)	0.03399 (12)	0.0622 (6)
N9	0.6902 (2)	0.7210 (4)	-0.08341 (14)	0.1065 (12)
N10	0.51142 (11)	0.60058 (17)	0.24260 (9)	0.0321 (4)
C1	0.87743 (13)	0.45325 (18)	0.27688 (10)	0.0242 (4)
C2	0.95391 (14)	0.4433 (2)	0.32828 (11)	0.0325 (4)

C26

Atomic disp	nacement parameters	S(A)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.02005 (14)	0.03028 (16)	0.02787 (16)	0.00049 (11)	-0.00010 (10)	-0.00116 (12)
N1	0.0219 (8)	0.0282 (8)	0.0271 (8)	0.0000 (6)	-0.0003 (6)	-0.0003 (6)
N2	0.0204 (7)	0.0269 (8)	0.0251 (8)	0.0003 (6)	-0.0021 (6)	-0.0009 (6)
N3	0.0219 (8)	0.0328 (9)	0.0350 (9)	-0.0007 (6)	-0.0036 (7)	-0.0055 (7)

-0.02745(15)

Atomic displacement parameters (A ²
--

0.72404 (19)

H10	0.4962	0.3470	0.0906	0.047*
C11	0.80572 (13)	0.34520 (18)	0.09524 (9)	0.0253 (4)
C12	0.89402 (13)	0.31643 (19)	0.06821 (10)	0.0281 (4)
C13	0.88645 (12)	0.42660 (18)	0.19952 (10)	0.0242 (4)
C14	0.96892 (13)	0.43718 (19)	0.16272 (10)	0.0266 (4)
C15	1.05445 (13)	0.5179 (2)	0.18756 (10)	0.0292 (4)
C16	1.14420 (14)	0.4738 (2)	0.17324 (12)	0.0371 (5)
H16	1.1523	0.3931	0.1480	0.045*
C17	1.22185 (15)	0.5528 (3)	0.19744 (14)	0.0480 (6)
H17	1.2832	0.5262	0.1887	0.058*
C18	1.20685 (16)	0.6706 (3)	0.23433 (14)	0.0530 (6)
H18	1.2580	0.7242	0.2519	0.064*
C19	1.11509 (16)	0.7090 (2)	0.24518 (13)	0.0459 (6)
H19	1.1056	0.7905	0.2693	0.055*
C20	0.90828 (14)	0.2209 (2)	0.00846 (10)	0.0304 (4)
C21	0.98469 (15)	0.2352 (2)	-0.03278 (11)	0.0406 (5)
H21	1.0265	0.3085	-0.0260	0.049*
C22	0.99719 (19)	0.1369 (3)	-0.08467 (12)	0.0523 (6)
H22	1.0479	0.1432	-0.1134	0.063*
C23	0.9341 (2)	0.0306 (3)	-0.09314 (13)	0.0547 (7)
H23	0.9412	-0.0367	-0.1275	0.066*
C24	0.85993 (19)	0.0258 (2)	-0.04955 (14)	0.0517 (6)
H24	0.8169	-0.0462	-0.0558	0.062*
C25	0.72974 (15)	0.6673 (2)	0.09222 (13)	0.0368 (5)

0.7046 (3)

supplementary	materials

1.0141

0.9889

0.8373

0.7151

0.7505

0.5971

0.4694

0.93869 (15)

0.84871 (15)

0.77617 (14)

0.71035 (13)

0.69805 (15)

0.60688 (17)

0.53124 (16)

0.54801 (14)

0.4195

0.4644

0.5222

0.5272

0.3313

0.3241

0.3213

0.4693 (2)

0.5027 (2)

0.5066 (2)

0.33917 (19)

0.3326 (2)

0.3280 (2)

0.3294 (2)

0.3427 (2)

0.3153

0.4337

0.4638

0.3753

-0.0459

-0.1016

-0.0309

0.39852 (11)

0.41657 (11)

0.36298 (11)

0.05521 (10)

-0.01871 (11)

-0.05189 (12)

-0.01012 (13)

0.06286 (12)

0.039*

0.045*

0.043*

0.038*

0.045*

0.0377 (5)

0.0360 (5)

0.0315 (4)

0.0271 (4)

0.0374 (5)

0.0472 (6) 0.057*

0.0470 (6)

0.0394 (5)

0.0559(7)

0.056*

H2

C3

H3

C4

H4

C5

Н5

C6

C7

H7

C8

H8

C9

Н9

C10

01	0.0369 (9)	0.0503 (9)	0.0458 (9)	0.0057 (7)	-0.0047 (7)	-0.0149 (8)
O2	0.0284 (8)	0.0533 (10)	0.0436 (9)	0.0041 (7)	-0.0096 (7)	-0.0050 (8)
O1W	0.0255 (8)	0.0370 (9)	0.0528 (9)	-0.0031 (6)	-0.0008 (7)	0.0092 (7)
O3	0.0277 (8)	0.0557 (10)	0.0618 (10)	0.0143 (7)	0.0046 (7)	-0.0050 (8)
N4	0.0423 (10)	0.0398 (10)	0.0380 (10)	-0.0039 (8)	0.0098 (8)	-0.0084 (8)
N5	0.0228 (8)	0.0358 (9)	0.0307 (8)	-0.0010 (6)	0.0025 (7)	-0.0006 (7)
N6	0.0246 (8)	0.0384 (10)	0.0410 (10)	-0.0014 (7)	-0.0009(7)	-0.0049 (8)
N7	0.0442 (11)	0.0323 (10)	0.0425 (11)	0.0007 (8)	-0.0020 (9)	0.0041 (8)
N8	0.0456 (12)	0.0891 (18)	0.0531 (13)	-0.0092 (12)	0.0118 (11)	0.0062 (12)
N9	0.085 (2)	0.184 (4)	0.0492 (16)	-0.030 (2)	-0.0023 (15)	0.0184 (19)
N10	0.0250 (8)	0.0374 (9)	0.0340 (9)	0.0026 (7)	0.0023 (7)	0.0033 (8)
C1	0.0232 (9)	0.0247 (9)	0.0244 (9)	-0.0010 (7)	-0.0008 (7)	0.0012 (7)
C2	0.0222 (9)	0.0421 (12)	0.0322 (10)	0.0045 (8)	-0.0039 (8)	-0.0009 (9)
C3	0.0352 (11)	0.0465 (13)	0.0293 (10)	0.0023 (9)	-0.0104 (9)	-0.0015 (9)
C4	0.0433 (12)	0.0399 (11)	0.0244 (10)	0.0016 (9)	0.0001 (9)	-0.0035 (8)
C5	0.0298 (10)	0.0349 (10)	0.0301 (10)	0.0015 (8)	0.0044 (8)	-0.0026 (8)
C6	0.0243 (9)	0.0260 (9)	0.0299 (10)	-0.0001 (7)	-0.0042 (8)	-0.0031 (8)
C7	0.0347 (11)	0.0454 (12)	0.0310 (11)	0.0026 (9)	-0.0036 (9)	-0.0008 (9)
C8	0.0478 (14)	0.0553 (15)	0.0355 (12)	0.0057 (11)	-0.0164 (10)	-0.0070 (11)
C9	0.0319 (11)	0.0535 (14)	0.0526 (14)	0.0025 (10)	-0.0161 (10)	-0.0121 (12)
C10	0.0231 (10)	0.0444 (13)	0.0497 (13)	-0.0008 (9)	-0.0051 (9)	-0.0131 (10)
C11	0.0236 (9)	0.0261 (9)	0.0257 (9)	0.0001 (7)	-0.0014 (7)	0.0000 (7)
C12	0.0260 (9)	0.0314 (10)	0.0266 (9)	0.0000 (8)	0.0008 (8)	0.0014 (8)
C13	0.0198 (8)	0.0256 (9)	0.0266 (9)	0.0025 (7)	-0.0025 (7)	-0.0007 (7)
C14	0.0205 (9)	0.0298 (10)	0.0290 (9)	0.0016 (7)	-0.0014 (7)	-0.0006 (8)
C15	0.0204 (9)	0.0357 (11)	0.0310 (10)	-0.0017 (7)	-0.0009(7)	0.0017 (8)
C16	0.0233 (10)	0.0424 (12)	0.0456 (12)	0.0007 (8)	0.0028 (9)	-0.0035 (10)
C17	0.0205 (10)	0.0605 (15)	0.0624 (16)	-0.0012 (10)	-0.0005 (10)	-0.0021 (13)
C18	0.0262 (11)	0.0605 (16)	0.0708 (17)	-0.0119 (11)	-0.0050 (11)	-0.0108 (14)
C19	0.0358 (12)	0.0441 (13)	0.0565 (14)	-0.0066 (10)	-0.0036 (11)	-0.0125 (11)
C20	0.0305 (10)	0.0349 (11)	0.0257 (9)	0.0040 (8)	0.0021 (8)	0.0001 (8)
C21	0.0350 (11)	0.0513 (13)	0.0367 (12)	0.0006 (10)	0.0103 (9)	-0.0003 (10)
C22	0.0533 (15)	0.0690 (18)	0.0374 (13)	0.0108 (13)	0.0209 (11)	-0.0010 (12)
C23	0.0729 (19)	0.0531 (16)	0.0396 (13)	0.0094 (13)	0.0147 (13)	-0.0128 (11)
C24	0.0624 (17)	0.0437 (14)	0.0500 (14)	-0.0076 (11)	0.0112 (12)	-0.0135 (11)
C25	0.0302 (11)	0.0321 (11)	0.0464 (13)	-0.0029 (8)	-0.0076 (10)	0.0002 (10)
C26	0.0520 (16)	0.0694 (18)	0.0481 (15)	-0.0163 (13)	0.0146 (13)	-0.0007 (13)

Geometric parameters (Å, °)

Mn1—O1W	2.1537 (15)	С3—Н3	0.9300
Mn1—N7	2.2457 (18)	C4—C5	1.376 (3)
Mn1—O1	2.2648 (15)	C4—H4	0.9300
Mn1—N2	2.2796 (15)	С5—Н5	0.9300
Mn1—N1	2.3015 (15)	C6—C7	1.383 (3)
Mn1—N3	2.3247 (16)	C6—C11	1.488 (2)
Mn1—O2	2.4021 (15)	С7—С8	1.384 (3)
N1—C5	1.337 (2)	С7—Н7	0.9300
N1—C1	1.341 (2)	C8—C9	1.371 (3)

N2—C11	1 333 (2)	C8—H8	0 9300
N2—C13	1 336 (2)	C9—C10	1 374 (3)
N3—C10	1 346 (2)	С9—Н9	0.9300
N3—C6	1 348 (2)	C10—H10	0.9300
01—N10	1 264 (2)	C11—C12	1 408 (3)
Ω^2 —N10	1 256 (2)	C_{12} C_{20} C_{20}	1 483 (3)
O1W—H1W	0.776 (16)	C13—C14	1401(3)
01W—H2W	0.800 (16)	C14-C15	1 485 (3)
03N10	1 221 (2)	C15-C16	1.103(3) 1.383(3)
N4_C24	1 325 (3)	C16-C17	1.305(3)
N4_C20	1.325(3)	C16—H16	0.9300
N5-C14	1 333 (2)	C17_C18	1 367 (3)
N5 C12	1.335(2) 1.334(2)	C17E18	0.0300
N6 C10	1.334(2) 1.326(2)	C12 C12	0.9300
N6 C15	1.330(3) 1.342(2)	C18—C19	0.0200
N7 C25	1.342(3)	C10—III0	0.9300
N9 C25	1.140 (3)	C19—III9	0.9300
N8-C25	1.284 (3)		1.381 (3)
N8-C26	1.294 (4)		1.387 (3)
N9—C26	1.128 (4)	C21—H21	0.9300
CI = C2	1.391 (2)	C22—C23	1.369 (4)
C1—C13	1.487 (2)	C22—H22	0.9300
C2—C3	1.3/3 (3)	C23—C24	1.377 (3)
С2—Н2	0.9300	C23—H23	0.9300
C3—C4	1.377 (3)	C24—H24	0.9300
O1W—Mn1—N7	177.74 (7)	N3—C6—C11	114.99 (16)
O1W—Mn1—O1	89.83 (6)	C7—C6—C11	122.91 (18)
N7—Mn1—O1	89.42 (7)	C6—C7—C8	119.3 (2)
O1W—Mn1—N2	101.50 (6)	С6—С7—Н7	120.3
N7—Mn1—N2	80.11 (6)	С8—С7—Н7	120.3
O1—Mn1—N2	152.04 (6)	C9—C8—C7	118.7 (2)
O1W—Mn1—N1	84.71 (6)	С9—С8—Н8	120.6
N7—Mn1—N1	94.37 (6)	С7—С8—Н8	120.6
O1—Mn1—N1	136.40 (6)	C8—C9—C10	119.1 (2)
N2—Mn1—N1	70.72 (5)	С8—С9—Н9	120.4
O1W—Mn1—N3	93.87 (6)	С10—С9—Н9	120.4
N7—Mn1—N3	88.18 (6)	N3—C10—C9	123.0 (2)
O1—Mn1—N3	84.12 (6)	N3—C10—H10	118.5
N2—Mn1—N3	69.81 (5)	С9—С10—Н10	118.5
N1—Mn1—N3	139.34 (6)	N2-C11-C12	118.14 (16)
O1W—Mn1—O2	92.71 (6)	N2-C11-C6	114.86 (16)
N7—Mn1—O2	85.11 (6)	C12—C11—C6	126.90 (17)
O1—Mn1—O2	54.58 (5)	N5-C12-C11	118.71 (17)
N2—Mn1—O2	148.05 (5)	N5-C12-C20	116.28 (16)
N1—Mn1—O2	82.45 (5)	C11—C12—C20	124.94 (17)
N3—Mn1—O2	138.12 (5)	N2—C13—C14	118.22 (16)
C5—N1—C1	117.95 (16)	N2—C13—C1	114.65 (16)
C5—N1—Mn1	123.77 (13)	C14—C13—C1	127.13 (16)
C1—N1—Mn1	117.69 (12)	N5-C14-C13	119.12 (16)
C11—N2—C13	120.85 (16)	N5-C14-C15	116.12 (16)

C11—N2—Mn1	119.97 (11)	C13—C14—C15	124.75 (17)
C13—N2—Mn1	117.31 (12)	N6—C15—C16	123.04 (18)
C10—N3—C6	117.61 (17)	N6-C15-C14	116.53 (17)
C10—N3—Mn1	122.22 (13)	C16—C15—C14	120.42 (18)
C6—N3—Mn1	116.22 (12)	C15-C16-C17	118.3 (2)
N10-01-Mn1	97.27 (11)	С15—С16—Н16	120.9
N10—O2—Mn1	90.98 (11)	С17—С16—Н16	120.9
Mn1—O1W—H1W	135 (2)	C18—C17—C16	119.0 (2)
Mn1—O1W—H2W	114.3 (19)	С18—С17—Н17	120.5
H1W—O1W—H2W	110 (3)	С16—С17—Н17	120.5
C24—N4—C20	117.06 (19)	C17—C18—C19	119.2 (2)
C14—N5—C12	120.17 (16)	С17—С18—Н18	120.4
C19—N6—C15	117.48 (18)	C19—C18—H18	120.4
C25—N7—Mn1	133.43 (17)	N6-C19-C18	123.0 (2)
C25—N8—C26	122.9 (2)	N6—C19—H19	118.5
O3—N10—O2	122.18 (17)	С18—С19—Н19	118.5
O3—N10—O1	121.26 (17)	N4—C20—C21	123.30 (19)
O2—N10—O1	116.56 (16)	N4—C20—C12	115.50 (17)
N1—C1—C2	122.17 (17)	C21—C20—C12	121.08 (18)
N1—C1—C13	115.05 (15)	C20—C21—C22	118.0 (2)
C2-C1-C13	122.73 (17)	C20-C21-H21	121.0
C3—C2—C1	118.60 (18)	C22—C21—H21	121.0
С3—С2—Н2	120.7	C23—C22—C21	119.3 (2)
C1—C2—H2	120.7	С23—С22—Н22	120.3
C2—C3—C4	119.67 (19)	C21—C22—H22	120.3
С2—С3—Н3	120.2	C22—C23—C24	118.3 (2)
С4—С3—Н3	120.2	С22—С23—Н23	120.9
C5—C4—C3	118.29 (19)	С24—С23—Н23	120.9
C5—C4—H4	120.9	N4—C24—C23	124.0 (2)
С3—С4—Н4	120.9	N4—C24—H24	118.0
N1—C5—C4	123.26 (18)	C23—C24—H24	118.0
N1—C5—H5	118.4	N7—C25—N8	172.7 (2)
С4—С5—Н5	118.4	N9—C26—N8	174.4 (3)
N3—C6—C7	121.95 (17)		
O1W—Mn1—N1—C5	-63.95 (15)	Mn1—N1—C5—C4	170.63 (15)
N7—Mn1—N1—C5	113.98 (16)	C3—C4—C5—N1	-1.4 (3)
O1—Mn1—N1—C5	20.22 (19)	C10—N3—C6—C7	5.5 (3)
N2—Mn1—N1—C5	-168.10 (16)	Mn1—N3—C6—C7	-152.74 (16)
N3—Mn1—N1—C5	-153.72 (14)	C10—N3—C6—C11	-178.84 (17)
O2—Mn1—N1—C5	29.50 (15)	Mn1—N3—C6—C11	23.0 (2)
O1W—Mn1—N1—C1	107.06 (13)	N3—C6—C7—C8	-4.3 (3)
N7—Mn1—N1—C1	-75.01 (14)	C11—C6—C7—C8	-179.65 (19)
O1—Mn1—N1—C1	-168.77 (12)	C6—C7—C8—C9	-0.4 (3)
N2—Mn1—N1—C1	2.91 (12)	C7—C8—C9—C10	3.5 (4)
N3—Mn1—N1—C1	17.29 (17)	C6—N3—C10—C9	-2.1 (3)
O2—Mn1—N1—C1	-159.49 (13)	Mn1—N3—C10—C9	154.67 (18)
O1W—Mn1—N2—C11	100.10 (14)	C8—C9—C10—N3	-2.4 (4)
N7-Mn1-N2-C11	-81.53 (14)	C13—N2—C11—C12	10.4 (3)
O1—Mn1—N2—C11	-12.0 (2)	Mn1—N2—C11—C12	174.40 (13)

N1—Mn1—N2—C11	-179.74 (15)	C13—N2—C11—C6	-166.21 (16)
N3—Mn1—N2—C11	10.18 (13)	Mn1—N2—C11—C6	-2.2 (2)
O2—Mn1—N2—C11	-145.24 (13)	N3—C6—C11—N2	-13.9 (2)
O1W—Mn1—N2—C13	-95.37 (13)	C7—C6—C11—N2	161.74 (19)
N7—Mn1—N2—C13	83.01 (13)	N3—C6—C11—C12	169.79 (18)
O1—Mn1—N2—C13	152.51 (13)	C7—C6—C11—C12	-14.5 (3)
N1—Mn1—N2—C13	-15.21 (12)	C14—N5—C12—C11	10.7 (3)
N3—Mn1—N2—C13	174.72 (14)	C14—N5—C12—C20	-166.23 (17)
O2—Mn1—N2—C13	19.30 (19)	N2-C11-C12-N5	-20.9 (3)
O1W—Mn1—N3—C10	84.37 (16)	C6-C11-C12-N5	155.22 (18)
N7—Mn1—N3—C10	-94.67 (16)	N2-C11-C12-C20	155.68 (18)
O1—Mn1—N3—C10	-5.06 (16)	C6—C11—C12—C20	-28.1 (3)
N2—Mn1—N3—C10	-174.79 (17)	C11—N2—C13—C14	9.5 (3)
N1—Mn1—N3—C10	170.75 (14)	Mn1—N2—C13—C14	-154.90 (13)
O2-Mn1-N3-C10	-14.0 (2)	C11—N2—C13—C1	-170.97 (16)
O1W—Mn1—N3—C6	-118.53 (13)	Mn1—N2—C13—C1	24.63 (19)
N7—Mn1—N3—C6	62.43 (14)	N1-C1-C13-N2	-21.5 (2)
O1—Mn1—N3—C6	152.04 (14)	C2—C1—C13—N2	155.81 (17)
N2—Mn1—N3—C6	-17.70 (13)	N1-C1-C13-C14	157.98 (18)
N1—Mn1—N3—C6	-32.16 (17)	C2-C1-C13-C14	-24.7 (3)
O2—Mn1—N3—C6	143.05 (12)	C12—N5—C14—C13	9.4 (3)
O1W—Mn1—O1—N10	97.99 (12)	C12—N5—C14—C15	-169.43 (17)
N7—Mn1—O1—N10	-79.87 (13)	N2-C13-C14-N5	-19.9 (3)
N2—Mn1—O1—N10	-147.21 (12)	C1-C13-C14-N5	160.60 (17)
N1-Mn1-O1-N10	15.86 (16)	N2-C13-C14-C15	158.84 (17)
N3—Mn1—O1—N10	-168.10 (12)	C1—C13—C14—C15	-20.6 (3)
O2-Mn1-O1-N10	4.54 (10)	C19—N6—C15—C16	-0.9 (3)
O1W—Mn1—O2—N10	-92.39 (11)	C19—N6—C15—C14	-179.71 (19)
N7-Mn1-O2-N10	88.24 (11)	N5-C14-C15-N6	144.16 (18)
O1—Mn1—O2—N10	-4.53 (10)	C13-C14-C15-N6	-34.6 (3)
N2-Mn1-O2-N10	150.67 (11)	N5-C14-C15-C16	-34.7 (3)
N1—Mn1—O2—N10	-176.69 (11)	C13-C14-C15-C16	146.5 (2)
N3—Mn1—O2—N10	6.46 (15)	N6-C15-C16-C17	1.1 (3)
O1—Mn1—N7—C25	-110.2 (2)	C14—C15—C16—C17	179.9 (2)
N2—Mn1—N7—C25	43.7 (2)	C15-C16-C17-C18	0.0 (4)
N1—Mn1—N7—C25	113.3 (2)	C16—C17—C18—C19	-1.3 (4)
N3—Mn1—N7—C25	-26.1 (2)	C15—N6—C19—C18	-0.5 (4)
O2—Mn1—N7—C25	-164.7 (2)	C17-C18-C19-N6	1.6 (4)
Mn1—O2—N10—O3	-171.75 (17)	C24—N4—C20—C21	-0.4 (3)
Mn1—O2—N10—O1	7.42 (17)	C24—N4—C20—C12	-176.33 (19)
Mn1—O1—N10—O3	171.25 (16)	N5-C12-C20-N4	147.61 (18)
Mn1—O1—N10—O2	-7.93 (18)	C11-C12-C20-N4	-29.1 (3)
C5—N1—C1—C2	2.4 (3)	N5-C12-C20-C21	-28.5 (3)
Mn1—N1—C1—C2	-169.16 (14)	C11—C12—C20—C21	154.8 (2)
C5—N1—C1—C13	179.72 (16)	N4—C20—C21—C22	0.0 (3)
Mn1—N1—C1—C13	8.2 (2)	C12—C20—C21—C22	175.8 (2)
N1—C1—C2—C3	-2.6 (3)	C20—C21—C22—C23	0.0 (4)
C13—C1—C2—C3	-179.76 (18)	C21—C22—C23—C24	0.3 (4)
C1—C2—C3—C4	0.8 (3)	C20—N4—C24—C23	0.7 (4)

C2—C3—C4—C5	1.1 (3)	C22—C23—C24—N4		-0.6 (4)
C1—N1—C5—C4	-0.4 (3)			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1W—H1W…N6 ⁱ	0.78 (2)	2.03 (2)	2.800 (2)	174 (3)
O1W—H2W…N7 ⁱ	0.80 (2)	2.24 (2)	3.029 (2)	168 (2)
С5—Н5…О2	0.93	2.53	3.122 (2)	122
C7—H7…N4	0.93	2.60	2.966 (3)	104
C10—H10…O1	0.93	2.51	3.027 (3)	116
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+3/2$	-1/2.			

